Elucidation of the biosynthetic pathway for Okenone in Thiodictyon sp. CAD16 leads to the discovery of two novel carotene ketolases.
نویسندگان
چکیده
Okenone is a unique ketocarotenoid found in many purple sulfur bacteria; it is important because of its unique light absorption and photoprotection properties. Okenane, a compound formed by diagenetic reduction of okenone, is an important biomarker in geochemical analyses of sedimentary rocks. Despite its ecological and biogeochemical importance, the biochemical pathway for okenone synthesis has not yet been fully described. The genome sequence of an okenone-producing organism, Thiodictyon sp. strain CAD16, revealed four genes whose predicted proteins had strong sequence similarity to enzymes known to produce ψ-end group modifications of carotenoids in proteobacteria. These four genes encoded homologs of a 1,2-carotenoid hydratase (CrtC), an O-methyltransferase (CrtF), and two paralogs of carotenoid 3,4-desaturases (CrtD). Expression studies in lycopene- or neurosporene-producing strains of Escherichia coli confirmed the functions of crtC and crtF, but the crtD paralogs encoded enzymes with previously undescribed functions. One enzyme, CruS, was only distantly related to CrtD desaturases, was bifunctional, and performed a 3,4-desaturation and introduced a C-2 keto group into neurosporene derivatives in the presence of dioxygen. The enzyme encoded by the other crtD paralog also represents a new enzyme in carotenogenesis and was named cruO. CruO encodes the C-4/4' ketolase uniquely required for okenone biosynthesis. The identification of CruO and the demonstration of its biochemical activity complete the elucidation of the biosynthetic pathway for okenone and other related ketocarotenoids.
منابع مشابه
HPLC-SPE-NMR: a productivity tool in natural products research
Natural products provide excellent potential leads for drug development because of their chemical diversity and biological functionality. However, the productivity of discovery of new, pharmacologically active natural products has traditionally been low due to inherent difficulties and costs associated with extract dereplication, i.e., isolation, purification and structure elucidation of indivi...
متن کاملHPLC-SPE-NMR: a productivity tool in natural products research
Natural products provide excellent potential leads for drug development because of their chemical diversity and biological functionality. However, the productivity of discovery of new, pharmacologically active natural products has traditionally been low due to inherent difficulties and costs associated with extract dereplication, i.e., isolation, purification and structure elucidation of indivi...
متن کاملCarotenoid Biosynthesis in Cyanobacteria: Structural and Evolutionary Scenarios Based on Comparative Genomics
Carotenoids are widely distributed pigments in nature and their biosynthetic pathway has been extensively studied in various organisms. The recent access to the overwhelming amount genomic data of cyanobacteria has given birth to a novel approach called comparative genomics. The putative enzymes involved in the carotenoid biosynthesis among the cyanobacteria were determined by similarity-based ...
متن کاملRho Kinase Inhibitors as a Novel Treatment for Glaucoma and Ocular Hypertension
In an elegant example of bench-to-bedside research, a hypothesis that cells in the outflow pathway actively regulate conventional outflow resistance was proposed in the 1990s and systematically pursued, exposing novel cellular and molecular mechanisms of intraocular pressure (IOP) regulation. The critical discovery that pharmacologic manipulation of the cytoskeleton of outflow pathway cells dec...
متن کاملDiscovery of Novel Glucagon Receptor Antagonists Using Combined Pharmacophore Modeling and Docking
Glucagon and the glucagon receptor are most important molecules control over blood glucose concentrations. These two molecules are very important to studies of type 2 diabetic patients. In literature, several classes of small molecule antagonists of the human glucagon receptor have been reported. Glucagon receptor antagonist could decrease hepatic glucose output and improve glucose control in d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 286 44 شماره
صفحات -
تاریخ انتشار 2011